
Chapitre 8

Chimie et électrochimie

8.3 Réactions chimiques couplées

L’oxydation du méthane peut avoir lieu par une des deux réactions
suivantes :

CH4 + 2O2
1−→ CO2 + 2H2O

2CH4 + 3O2
2−→ 2CO + 4H2O

Lorsque les réactions s’arrêtent au temps tf parce que tout le méthane a été
brûlé, la masse totale des produits (CO2, CO, H2O) est

M (tf ) = MCO2 (tf ) +MCO (tf ) +MH2O (tf )

Déterminer les avancements finaux ξ1 (tf ) et ξ2 (tf ) des réactions chimiques
couplées 1 et 2. En déduire la masse initiale de méthane MCH4

(0) en termes de
la masse totale M (tf ) des produits, de la masse d’eau MH2O (tf ) à l’aide des
masses molaires du méthane mCH4

, de l’eau mH2O, du monoxyde de carbone
mCO et du dioxyde de carbone mCO2 .

Application numérique

M (tf ) = 24,8 g, MH2O (tf ) = 12,6 g, mCH4 = 16 gmol−1

mH2O = 18 gmol−1, mCO = 28 gmol−1 et mCO2
= 44 gmol−1.

8.3 Solution

Les coefficients stœchiométiques de la réaction chimique,

CH4 + 2O2
1−→ CO2 + 2H2O

2CH4 + 3O2
2−→ 2CO + 4H2O

sont ν1,CH4
= − 1, ν1,O2

= − 2, ν1,CO2
= 1, ν1,H2O = 2, ν2,CH4

= − 2, ν2,O2
=

− 3, ν2,CO = 2 et ν2,H2O = 4. D’après la relation (8.14), l’évolution temporelle
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du nombre de moles d’une substance A qui prend part aux réactions couplées
1 et 2 est donnée par,

NA (t) = NA (0) + ν1,A ξ1 (t) + ν2,A ξ2 (t)

Les réactions s’arrêtent au temps tf lorsque tout le méthane est consommé.
Ainsi, d’après la relation (8.14),

NCH4 (tf ) = NCH4 (0) + ν1,CH4 ξ1 (tf ) + ν2,CH4 ξ2 (tf ) = 0

ce qui implique que le nombre initial de moles de méthane s’écrit,

NCH4 (0) = ξ1 (tf ) + 2 ξ2 (tf )

Initialement, il n’y a pas d’eau, c’est-à-dire NH2O (0) = 0. Ainsi, d’après la
relation (8.14), on écrit,

NH2O (tf ) = NH2O (0) + ν1,NH2O
ξ1 (tf ) + ν2,NH2O

ξ2 (tf )

Comme MH2O (tf ) = 12.6 g et mH2O = 18 gmol−1, on obtient l’identité sui-
vante,

NH2O (tf ) =
MH2O (tf )

mH2O
= 2 ξ1 (tf ) + 4 ξ2 (tf ) = 0,7mol

Initialement, il n’y a ni dioxyde ni monoxyde de carbone, c’est-à-dire
NCO2

(0) = 0 et NCO (0) = 0. D’après la relation (8.7), l’évolution temporelle
du dioxyde et du monoxyde de carbone sont données par,

NCO2
(tf ) = NCO2

(0) + ν1,CO2
ξ1 (tf ) = ξ1 (tf )

NCO (tf ) = NCO (0) + ν2,CO ξ2 (tf ) = 2 ξ2 (tf )

La masse totale finale des produits M (tf ) est le produit de leur nombre de
moles et de leurs masses molaires,

M (tf ) = NCO2
(tf ) mCO2

+NCO (tf ) mCO +NH2O (tf ) mH2O = 24,8 g

ce qui implique que,

mCO2

M (tf )
NCO2

(tf ) +
mCO

M (tf )
NCO (tf ) +

mH2O

M (tf )
NH2O (tf ) = 1

qui peut être mis sous la forme,(
mCO2

M (tf )
+ 2

mH2O

M (tf )

)
ξ1 (tf ) +

(
2

mCO

M (tf )
+ 4

mH2O

M (tf )

)
ξ2 (tf ) = 1

Comme M (tf ) = 24,8 g, mH2O = 18 gmol−1, mCO = 28 gmol−1 et mCO2 =
44 gmol−1, on obtient les identités suivantes,

3,23 ξ1 (tf ) + 5,16 ξ2 (tf ) = 1mol
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En résolvant le système d’équations,

2 ξ1 (tf ) + 4 ξ2 (tf ) = 0,7mol

3,23 ξ1 (tf ) + 5,16 ξ2 (tf ) = 1mol

on trouve que,

ξ1 (tf ) = 0,15mol et ξ2 (tf ) = 0,10mol

Comme mCH4
= 16 gmol−1, la masse initiale de méthane MCH4

(0) consommée
dans cette réaction est,

MCH4
(0) = NCH4

(0) mCH4
=
(
ξ1 (tf ) + 2 ξ2 (tf )

)
mCH4

= 5,6 g

8.9 Équilibre chimique

Dans un cylindre, on place NN2
moles d’azote moléculaire N2 et NH2

moles d’hydrogène moléculaire H2 qui peuvent être considérés comme des gaz
parfaits. Le système est fermé par un piston. Les gaz parfaits sont initialement
séparés par une paroi imperméable de masse négligeable (fig. 8.1). Ils sont
maintenus à température constante T et à pression constante p. Lorsque la paroi
est enlevée, une réaction chimique, notée a, a lieu grâce à un catalyseur que l’on
peut ignorer dans l’analyse. La réaction chimique produit de l’ammoniac NH3,
qui peut être considéré comme un gaz parfait. On suppose que la température
et la pression sont constantes lors de la réaction chimique.

H2

N2

NH3N2

H2

Fig. 8.1 Dans l’état initial, de l’hydrogène moléculaire H2 et de l’azote moléculaire N2 sont
séparés par une paroi dans un cylindre fermé par un piston. Après avoir retiré la paroi, une
réaction chimique produit de l’ammoniac NH3.

1) Définir la réaction chimique a et déterminer les coefficients stœchiomé-
triques νaN2

, νaH2
et νaNH3

.
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2) Dans le cas particulier où le système est constitué initialement de N
moles d’azote moléculaire et de 3N moles d’hydrogène moléculaire qui se
transforment entièrement en ammoniac, déterminer le rapport des volumes
VNH3

/ (VN2
+ VH2

).

3) Déterminer la condition d’équilibre des potentiels chimiques en supposant
qu’il s’agit d’un mélange idéal.

4) Exprimer cette condition d’équilibre en fonction de la constante d’équilibre
Ka de la réaction chimique a.

8.9 Solution

1) Les coefficients stœchiométriques de la réaction chimique a sont νaN2
= − 1,

νaH2
= − 3 et νaNH3

= 2,

N2 + 3H2 ⇄ 2NH3

2) Dans le cas particulier où la réaction chimique transforme entièrement
l’azote et l’hydrogène moléculaires en ammoniac, les volumes initiaux de
gaz parfaits VN2

, VH2
et le volume final de gaz parfait VNH3

sont donnés
par,

VN2
=

NRT

p
et VH2

=
3NRT

p
et VNH3

=
2NRT

p

Par conséquent, le rapport des volumes de gaz parfaits est donné par,

VNH3

VN2
+ VH2

=
1

2

Cela implique que la réaction chimique a provoque la diminution du volume
de gaz lors de la production d’ammoniac.

3) Compte tenu de l’expression explicite des coefficients stœchiométriques, la
condition d’équilibre (8.19) des potentiels chimiques s’écrit,

−µN2
(T, p, cN2

)− 3µH2
(T, p, cH2

) + 2µNH3
(T, p, cNH3

) = 0

4) D’après la définition (8.92) des potentiels chimiques en fonction de la
concentration,

µN2 (T, p, cN2) = µN2 (T, p) +RT ln (cN2)

µH2 (T, p, cH2) = µH2 (T, p) +RT ln (cH2)

µNH3 (T, p, cNH3) = µNH3 (T, p) +RT ln (cNH3)

et du fait que la concentration d’ammoniac est liée aux concentrations
d’azote et d’hydrogène moléculaires,

cNH3
= 1− cN2

− cH2

la condition d’équilibre chimique est mise sous la forme,

−µN2(T, p)− 3µH2(T, p) + 2µNH3(T, p) = −RT ln

(
(1− cN2 − cH2)

2

cN2
c3H2

)
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La constante d’équilibre (8.107) de la réaction chimique a s’écrit,

Ka = c
νaN2

N2
c
νaH2

H2
c
νaNH3

NH3
=

c2NH3

cN2
c3H2

=
(1− cN2

− cH2
)
2

cN2
c3H2

Ainsi, la condition d’équilibre chimique s’écrit en fonction de la constante
d’équilibre Ka comme,

−µN2
(T, p)− 3µH2

(T, p) + 2µNH3
(T, p) = −RT ln (Ka)

8.10 Mélange d’oxydes d’azote

Dans l’état initial, on considère un système isolé formé de deux sous-
systèmes simples séparés par une paroi diatherme, immobile et imperméable.
Le sous-système simple 1, de volume V1, contient NNO (0) moles de monoxyde
d’azote NO et le sous-système simple 2, de volume V2, contient NO2

(0) moles
d’oxygène moléculaire O2. Le monoxyde d’azote NO et l’oxygène moléculaire O2

sont considérés comme des gaz parfaits. Les deux sous-systèmes ont initialement
la même température Ti et la même pression p. Au temps t = 0, la paroi entre
les deux sous-systèmes est subitement retirée et les gaz parfaits se mélangent.
On admet que ce mélange devient homogène dès que la paroi a été retirée
de sorte que le système peut alors être considéré comme un système simple
de volume V = V1 + V2. Le monoxyde d’azote NO et l’oxygène moléculaire O2

participent alors à une réaction chimique qui produit spontanément du dioxyde
d’azote NO2, considéré comme un gaz parfait, selon les proportions suivantes,

2NO +O2 → 2NO2

Etat  initial Etat final

Fig. 8.2 État initial et état final du système simple

Durant la réaction chimique, on constate que la variation de pression est négli-
geable de sorte que la pression p du système peut être considérée comme
constante. Dans l’état final, au temps t = tf , le système simple atteint un état
d’équilibre chimique à température Tf et pression p. Le système simple, consi-
déré comme un mélange idéal de gaz parfaits, contient alors NNO (tf ) moles de
monoxyde d’azote NO, NO2

(tf ) moles d’oxygène moléculaire O2 et NNO2
(tf )

moles de dioxyde d’azote NO2.

1) Déterminer les coefficients stœchiométriques νNO, νO2
et νNO2

. En dé-
duire l’évolution temporelle des nombres de moles des gaz parfaits NNO (t),
NO2 (t) et NNO2 (t) en fonction de l’avancement de la réaction ξ (t).



6 Chimie et électrochimie

2) Calculer la puissance dissipée T (t) ΣS (t) au temps t, i.e. 0 < t < tf , durant
la réaction chimique en termes de la vitesse de réaction chimique Ω (t).

3) Déterminer la condition d’équilibre chimique et l’exprimer au temps tf
en termes des potentiels chimiques des gaz parfaits purs µNO (Tf , p),
µO2

(Tf , p) et µNO2
(Tf , p) ainsi que de leurs concentrations finales cNO (tf ),

cO2
(tf ) et cNO2

(tf ).

4) Déterminer l’avancement de la réaction chimique ξ (tf ) dans l’état final
d’équilibre chimique entre les trois gaz parfaits en termes des nombres ini-
tiaux de moles de gaz parfaits NNO (0) et NO2 (0) en se basant sur l’extensi-
vité du volume et en écrivant la pression totale comme somme des pressions
partielles. En déduire une condition sur la température finale Tf .

8.10 Solution

1) Les coefficients stœchiométriques νNO, νO2 des réactifs sont négatifs et le
coefficient stœchiométrique νNO2 du produit est positif,

νNO = − 2 et νO2 = − 1 et νNO2 = 2

Compte tenu des coefficients stœchiométriques, l’évolution temporelle des
nombres de moles des gaz parfaits NNO (t), NO2

(t) et NNO2
(t) s’écrit,

NNO (t) = NNO (0) + νNO ξ (t) = NNO (0)− 2 ξ (t)

NO2
(t) = NO2

(0) + νO2
ξ (t) = NO2

(0)− ξ (t)

NNO2
(t) = NNO2

(0) + νNO2
ξ (t) = 2 ξ (t)

car NNO2
(0) = 0.

2) La source d’entropie au temps t s’écrit,

ΣS (t) =
1

T (t)
A (t) Ω (t) ⩾ 0

L’énergie libre de Gibbs du système simple est,

G (t) = µNO NNO (t) + µO2 NO2 (t) + µNO2 NNO2 (t)

Compte tenu des coefficients stœchiométriques, des équations d’évolution
temporelle et de l’énergie libre de Gibbs, l’affinité de la réaction chimique
s’écrit,

A (t) = − ∂G (t)

∂ξ (t)

= − ∂

∂ξ (t)

(
µNO NNO (t) + µO2 NO2 (t) + µNO2 NNO2 (t)

)
= − νNO µNO (t)− νO2 µO2 (t)− νNO2 µNO2 (t)

= 2µNO (t) + µO2
(t)− 2µNO2

(t)
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Compte tenu de l’affinité chimique des gaz parfaits et de la source d’entro-
pie, la puissance dissipée s’écrit,

T (t) ΣS (t) = A (t) Ω (t) =
(
2µNO (t) + µO2 (t)− 2µNO2 (t)

)
Ω (t) > 0

où l’inégalité stricte est due au fait que le système n’a pas encore atteint
l’état d’équilibre chimique.

3) À l’équilibre chimique au temps t = tf , l’affinité s’annule, i.e. A (tf ) = 0,
ce qui donne la condition d’équilibre chimique,

2µNO (tf ) + µO2 (tf )− 2µNO2 (tf ) = 0

Les potentiels chimiques des gaz parfaits dans le mélange dans l’état d’équi-
libre final à température Tf et pression p s’écrivent en termes de leurs
concentrations finales cNO (tf ), cO2

(tf ) et cNO2
(tf ) comme,

µNO (tf ) = µNO

(
Tf , p, cNO (tf )

)
= µNO (Tf , p) +RTf ln

(
cNO (tf )

)
µO2

(tf ) = µO2

(
Tf , p, cO2

(tf )
)
= µO2

(Tf , p) +RTf ln
(
cO2

(tf )
)

µNO2
(tf ) = µNO2

(
Tf , p, cNO2

(tf )
)
= µNO2

(Tf , p) +RTf ln
(
cNO2

(tf )
)

En substituant ces relations dans la condition d’équilibre chimique, on ob-
tient,

2µNO (Tf , p)+µO2
(Tf , p)− 2µNO2

(Tf , p)+RTf ln

(
cNO (tf )

2
cO2

(tf )

cNO2
(tf )

2

)
= 0

La constante d’équilibre (8.106) de la réaction s’écrit,

K (tf ) =
cNO2

(tf )
2

cNO (tf )
2
cO2

(tf )

Compte tenu de la constante d’équilibre, la condition d’équilibre se réduit
à,

2µNO (Tf , p) + µO2
(Tf , p)− 2µNO2

(Tf , p)− RTf ln (K (tf )) = 0

4) Dans l’état initial, les volumes V1 et V2 occupés par les gaz parfaits sont
liés à leur nombre initial de moles respectifs NNO (0) et NO2 (0) ainsi qu’à
la température initiale Ti et à la pression p par l’équation d’état de ces gaz
parfaits,

V1 =
NNO (0)RTi

p
et V2 =

NO2
(0)RTi

p

Le volume total du système est la somme des volumes des sous-systèmes,

V = V1 + V2 =

(
NNO (0) +NO2 (0)

)
RTi

p
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Dans l’état final, les pressions partielles des trois gaz parfaits s’écrivent,

pNO =
NNO (tf )RTf

V
et pO2

=
NNO (tf )RTf

V

pNO2
=

NNO2
(tf )RTf

V

La pression totale est la somme des pressions partielles des gaz parfaits,

p = pNO + pO2 + pNO2 =

(
NNO (tf ) +NO2

(tf ) +NNO2
(tf )

)
RTf

V

Compte tenu des équations d’évolution temporelle évaluées au temps t = tf
et de la pression totale, le volume total du système s’écrit,

V =

(
NNO (0) +NO2

(0)− ξ (tf )
)
RTf

p

En identifiant les deux expressions pour le volume, on obtient la relation,(
NNO (0) +NO2 (0)

)
Ti =

(
NNO (0) +NO2 (0)− ξ (tf )

)
Tf

On déduit de cette équation que l’avancement de la réaction ξ (tf ) à l’équi-
libre chimique est donné par,

ξ (tf ) =
(
NNO (0) +NO2

(0)
)(

1− Ti

Tf

)
Comme la réaction chimique produit spontanément du dioxyde d’azote
NO2, l’avancement de la réaction doit être positif, i.e. ξ (tf ) > 0. Compte
tenu de l’avancement de la réaction chimique, la température du système
simple doit augmenter au cours de la réaction,

Tf > Ti

ce qui signifie qu’elle est exothermique. De manière équivalente, comme le
système est isolé et que la puissance dissipée est non nulle, la température
augmente durant la réaction chimique.

8.13 Entropie et énergie libre de Gibbs de mélange

Un système isolé de volume V est constitué de deux sous-systèmes
simples de volumes V1 et V2 séparés par une paroi diatherme fixe dans l’état
initial i. La température T et la pression p sont constantes et les mêmes dans
les deux sous-systèmes. Le volume total V est fixe. Initialement, il y a N1 moles
d’un gaz parfait 1 dans un sous-système et N2 moles d’un gaz parfait 2 dans
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l’autre. On laisse les gaz parfaits diffuser et se mélanger en enlevant la paroi
(1)
.

Dans l’état final f , le mélange est homogène. Il n’y a pas de réaction chimique
entre les gaz parfaits.

1) Déterminer la variation d’énergie interne ∆Ui→f du système lors du mé-
lange.

2) Déterminer la variation d’enthalpie ∆Hi→f du système lors du mélange.

3) Déterminer la variation d’entropie ∆Si→f du système lors du mélange en
fonction des concentrations c1 et c2 des gaz parfaits dans le mélange et
montrer qu’elle est positive.

4) Déterminer la variation d’énergie libre de Gibbs ∆Gi→f du système lors
du mélange en fonction des concentrations c1 et c2 des gaz parfaits dans le
mélange et montrer qu’elle est négative.

8.13 Solution

1) Comme le système est isolé, la variation d’énergie interne (1.47) lors du
mélange est nulle,

∆Ui→f = 0

2) D’après l’expression (5.86), la variation d’enthalpie d’un gaz parfait lors
d’un processus isotherme est nulle. Par conséquent, la variation d’enthalpie
totale lors du mélange est nulle,

∆Hi→f = 0

3) Compte tenu de l’expression (5.93) de la variation d’entropie pour un pro-
cessus isotherme, la variation d’entropie du système s’écrit,

∆Si→f = ∆S1,i→f +∆S2,i→f = N1 R ln

(
Vf

V1,i

)
+N2 R ln

(
Vf

V2,i

)
Avant le mélange les gaz parfaits satisfont les équations d’état (5.66),

V1,i = V1 =
N1RT

p
et V2,i = V2 =

N2RT

p
et Vf = V

En sommant les deux équations précédentes on obtient une expression pour
le volume total V ,

V = V1 + V2 =
(N1 +N2)RT

p

En substituant les deux équations précédentes dans l’expression de ∆Si→f ,
on obtient,

∆Si→f = N1 R ln

(
N1 +N2

N1

)
+N2 R ln

(
N1 +N2

N2

)
(1)

Howard Reiss, Methods of Thermodynamics, Dover Publications Inc., New York, 1996,
sect. 5.39 et suivantes.
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D’après l’expression (8.48), les concentrations de gaz parfaits sont définies
comme,

c1 =
N1

N1 +N2
et c2 =

N2

N1 +N2

En substituant les deux équations précédentes dans l’expression de ∆S, on
obtient,

∆Si→f = −N1 R ln (c1)− N2 R ln (c2) = −R ln
(
cN1
1 cN2

2

)
Or,

ln
(
cN1
1 cN2

2

)
=

2∑
A=1

NA ln (cA) < 0

À l’aide de l’expression (8.35) pour la concentration cA, on obtient l’entropie
du mélange isotherme,

∆Si→f = −R

2∑
A=1

NA ln (cA) = −NR

2∑
A=1

cA ln (cA) > 0

où N = N1 + N2. Par conséquent, l’entropie augmente lors du mélange.
Cette inégalité signifie que dans un système isolé le mélange est un processus
irréversible comme on le comprend intuitivement.

4) D’après les équations (4.31) et (4.39) pour un processus isotherme, la va-
riation d’enthalpie ∆Hi→f du mélange est nulle et la variation d’énergie
libre de Gibbs ∆Gi→f s’écrit,

∆Gi→f = ∆Hi→f − T ∆Si→f − S∆Ti→f = −T ∆Si→f

= NRT

2∑
A=1

cA ln (cA) < 0

Par conséquent, la variation d’énergie libre de Gibbs lors d’un mélange
isotherme est négative. Cette inégalité précédente signifie que le mélange à
pression et température constantes est un processus spontané comme on le
comprend aussi intuitivement.

8.14 Évolution de l’entropie lors d’un mélange

Un récipient rigide et adiabatiquement fermé de volume V est divisé
en deux compartiments de volumes identiques V/2 par une paroi diatherme,
imperméable et fixe. Initialement, le compartiment 1 contient un gaz parfait A
et le compartiment 2 contient un gaz parfait B (fig. 8.3). Les gaz dans les deux
compartiments sont à l’équilibre thermique et mécanique, c’est-à-dire qu’ils ont
une température T et une pression p identiques. Lorsque la paroi est enlevée, le
système évolue progressivement vers l’équilibre chimique. Durant le mélange,
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Fig. 8.3 État initial et état final du mélange des gaz parfaits A et B dans les compartiments
1 et 2.

la température et la pression du système sont constantes. Il n’y a ni réaction
chimique, ni interaction entre les deux gaz parfaits. Par conséquent, le mélange
est également un gaz parfait.

1) Montrer les identités suivantes,

N

2
≡ NA,1 +NB,1 = NA,2 +NB,2 = cste

NA,2 =
N

2
− NA,1 et NB,2 =

N

2
− NB,1

où NA,1, NA,2, NB,1 et NB,2 sont les nombres de moles de gaz parfaits A
et B dans les compartiments 1 et 2.

2) Déterminer les variations infinitésimales d’énergie interne dU1 et dU2 dans
les deux compartiments durant le mélange des gaz parfaits A et B.

3) En déduire la variation infinitésimale de l’entropie dS du système de deux
gaz parfaits A et B en termes de leurs concentrations molaires cA,1, cA,2 et
cB,1, cB,2 dans les deux compartiments durant le mélange.

4) Montrer que la variation infinitésimale d’entropie peut être mise sous la
forme suivante,

dS = −NR
(
ln (cA,1)− ln (1− cA,1)

)
dcA,1

5) À l’équilibre dans l’état final, montrer que le mélange est homogène,

cA,1 = cB,1 = cA,2 = cB,2 =
1

2

6) Montrer que la variation d’entropie durant le mélange s’écrit,

∆Si→f = NR ln 2 > 0

7) En déduire que cette variation d’entropie ∆Si→f est l’entropie de mélange
déterminée dans les exercices 8.12 et 8.13.

8.14 Solution

1) À l’aide de l’équation d’état du gaz parfait (5.66), on obtient la condition
suivante pour les nombres de moles du mélange de gaz parfaits dans les
deux compartiments de volume V/2, de pression p et de température T ,

NA,1 +NB,1 = NA,2 +NB,2 ≡ N

2
=

p V

2RT
= cste
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Initialement, le gaz parfait A se trouve entièrement dans le compartiment 1
contenant N/2 moles de gaz, et le gaz parfait B se trouve entièrement
dans le compartiment 2 contenant aussi N/2 moles de gaz. Lorsque les gaz
parfaits se mélangent, les nombres de moles de chaque gaz parfait restent
constants dans le système. Ainsi,

N

2
= NA,1 +NA,2 = NB,1 +NB,2

2) La relation de Gibbs (4.1) pour les gaz parfaits A et B dans les comparti-
ments 1 et 2 de volume V/2 fixé durant le mélange s’écrit,

dU1 = dUA,1 + dUB,1 = T (dSA,1 + dSB,1)

+ µA,1 (T, p, cA,1) dNA,1 + µB,1 (T, p, cB,1) dNB,1

dU2 = dUA,2 + dUB,2 = T (dSA,2 + dSB,2)

+ µA,2 (T, p, cA,2) dNA,2 + µB,2 (T, p, cB,2) dNB,2

3) La variation infinitésimale d’entropie du système durant le mélange s’écrit,

dS = dS1 + dS2 = dSA,1 + dSB,1 + dSA,2 + dSB,2

Étant donné que le récipient est rigide et adiabatiquement fermé, la varia-
tion infinitésimale d’énergie interne durant le mélange est nulle,

dU = dU1 + dU2 = dUA,1 + dUB,1 + dUA,2 + dUB,2 = 0

Comme le système est fermé et qu’il n’y a pas de réaction chimique entre
les deux gaz parfaits, le nombre NA de moles de gaz parfait A et le nombre
NB de moles de gaz parfait B sont constants,

dNA = dNA,1 + dNA,2 = 0 et dNB = dNB,1 + dNB,2 = 0

Ainsi,
dNA,2 = − dNA,1 et dNB,2 = − dNB,1

Par conséquent, la variation infinitésimale d’entropie durant le mélange est
obtenue en sommant les relations de Gibbs pour chaque compartiment,

dS = − 1

T

(
µA,1 (T, p, cA,1)− µA,2 (T, p, cA,2)

)
dNA,1

− 1

T

(
µB,2 (T, p, cB,2)− µB,1 (T, p, cB,1)

)
dNB,2

Compte tenu de la relation (8.92), les potentiels chimiques des gaz parfaits
dans chaque compartiment s’écrivent,

µA,1 (T, p, cA,1) = µA,1 (T, p) +RT ln (cA,1)

µA,2 (T, p, cA,2) = µA,2 (T, p) +RT ln (cA,2)

µB,1 (T, p, cA,1) = µB,1 (T, p) +RT ln (cB,1)

µB,2 (T, p, cA,2) = µB,2 (T, p) +RT ln (cB,2)
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où les potentiels chimiques des gaz parfaits purs A et B sont les mêmes
dans les deux compartiments.

µA,1 (T, p) = µA,2 (T, p) et µB,1 (T, p) = µB,2 (T, p)

Ainsi, la variation infinitésimale d’entropie durant le mélange devient,

dS = −R
(
ln (cA,1)− ln (cA,2)

)
dNA,1 − R

(
ln (cB,2)− ln (cB,1)

)
dNB,2

4) Compte tenu des relations entre les concentrations molaires (8.48) des gaz
parfaits A et B dans les deux compartiments,

cA,2 =
NA,2

N

2

=

N

2
− NA,1

N

2

= 1− cA,1

cB,1 =
NB,1

N

2

=

N

2
− NB,2

N

2

= 1− cB,2

et des variations infinitésimales des concentrations molaires,

dcA,1 = d

NA,1

N

2

 =
dNA,1

N

2

et dcB,2 = d

NB,2

N

2

 =
dNB,2

N

2

la variation infinitésimale d’entropie durant le mélange prend la forme sui-
vante,

dS = − N

2
R
(
ln (cA,1)− ln (1− cA,1)

)
dcA,1

− N

2
R
(
ln (cB,2)− ln (1− cB,2)

)
dcB,2

Compte tenu des relations entre les concentrations molaires des gaz parfaits
A et B dans les deux compartiments,

cB,2 =
NB,2

N

2

=

N

2
− NA,2

N

2

= 1− cA,2 = cA,1

Par conséquent, la variation infinitésimale d’entropie durant le mélange se
réduit à,

dS = −NR
(
ln (cA,1)− ln (1− cA,1)

)
dcA,1

5) La variation infinitésimale d’entropie peut être mise sous la forme suivante,

dS = NR ln

(
1− cA,1

cA,1

)
dcA,1
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D’après la condition d’équilibre du deuxième principe (2.2), l’entropie est
maximale à l’équilibre. Ainsi, à l’équilibre,

dS

dcA,1
= NR ln

(
1− cA,1

cA,1

)
= 0 (équilibre)

ce qui implique que,

cA,1 = 1− cA,1 (équilibre)

Cela signifie que le mélange est homogène à l’équilibre,

cA,1 = cB,1 = cA,2 = cB,2 =
1

2
(équilibre)

6) Compte tenu des conditions initiale et finale sur la concentration molaire
du gaz parfait A durant le mélange i → f ,

cA,1 (ti) = 1 et cA,1 (tf ) =
1

2

La variation d’entropie durant le mélange s’écrit,

∆Si→f =

∫ f

i

dS = NR

∫ 1
2

1

ln

(
1− cA,1

cA,1

)
dcA,1

Le résultat formel de cette intégrale est,∫ 1
2

1

ln

(
1− cA,1

cA,1

)
dcA,1 =

(
(1− cA,1) ln

(
1− cA,1

cA,1

)
− ln (cA,1)

)∣∣∣∣ 12
1

qui se réduit à,∫ 1
2

1

ln

(
1− cA,1

cA,1

)
dcA,1 = − ln

(
1

2

)
= ln 2

Par conséquent, la variation d’entropie durant le mélange devient,

∆Si→f = NR ln 2

7) Les concentrations molaires des gaz parfaits A et B dans le système sont
constants durant le mélange,

cA = cB =

N

2
N

=
1

2

Ainsi, l’entropie de mélange ∆Si→f déterminée dans les exercices 8.12
et 8.13 pour un mélange de N moles de gaz parfait à l’équilibre s’écrit,

∆Si→f = −NR
(
cA ln (cA) + cB ln (cB)

)
= −NR ln

(
1

2

)
= NR ln 2 > 0
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8.16 Température d’ébullition de l’eau salée

On considère un mélange d’eau et de sel avec une faible concentra-
tion de sel. Utiliser la loi des mélange idéaux (8.92) pour évaluer le potentiel
chimique de l’eau dans l’eau salée. D’après la relation (8.68), pour toute sub-
stance A dans n’importe quelle phase, µA (T ) = hA− T sA. Supposer que dans
le voisinage de la température d’ébullition T0 de l’eau pure, l’enthalpie molaire
hA et l’entropie molaire sA des phases liquide et gazeuse ne dépendent pas de
la température. Déterminer la variation de la température d’ébullition T − T0

comme fonction de la concentration de sel cA.

8.16 Solution

Étant donné que la concentration de sel est cA, la concentration d’eau est 1− cA,
où cA ≪ 1. Comme le mélange est supposé idéal, le potentiel chimique de l’eau
s’écrit,

µ
(ℓ)
A (T, 1− cA) = µ

(ℓ)
A (T ) +RT ln (1− cA) ≃ µ

(ℓ)
A (T )− RTcA

Lorsque la vapeur d’eau et l’eau salée sont à l’équilibre, les potentiels chimiques
de l’eau dans les phases liquide et gazeuse sont égaux. Ainsi, on a pour de l’eau
pure à la température d’ébullition T0,

µ
(ℓ)
A (T0) = µ

(g)
A (T0)

Lorsque la solution d’eau salée est à la température d’ébullition T , la même
condition d’équilibre s’écrit,

µ
(ℓ)
A (T, 1− cA) = µ

(g)
A (T )

La différence entre ces deux conditions s’écrit,

µ
(ℓ)
A (T, 1− cA)− µ

(ℓ)
A (T0) = µ

(g)
A (T )− µ

(g)
A (T0)

Compte tenu de la relation pour un mélange idéal, on obtient,

µ
(ℓ)
A (T )− µ

(ℓ)
A (T0)− RTcA = µ

(g)
A (T )− µ

(g)
A (T0)

À présent, on exprime les potentiels chimiques en termes des enthalpies molaires
et des entropies molaires,

h
(ℓ)
A − T s

(ℓ)
A − h

(ℓ)
A + T0 s

(ℓ)
A − RTcA = h

(g)
A − T s

(g)
A − h

(g)
A + T0 s

(g)
A

qui se réduit à,

(T − T0) s
(ℓ)
A +RTcA = (T − T0) s

(g)
A

Ainsi, compte tenu de la température de la chaleur latente molaire de vapori-
sation (6.68), la variation de la température d’ébullition de l’eau en présence
de sel est,

T − T0 =
RTcA

s
(g)
A − s

(ℓ)
A

=
RT 2cA
ℓℓ→g
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8.17 Osmose gazeuse

Un système isolé est constitué de deux sous-systèmes rigides de
volumes V1 et V2 séparés par une membrane rigide et poreuse. L’hélium (He)
peut diffuser à travers la membrane, mais pas l’oxygène (O2). On dénote l’hé-
lium A et l’oxygène B. Le système est à l’équilibre thermique en tout temps.
Chaque gaz peut être considéré comme un gaz parfait qui satisfait les équa-
tions d’état (5.58) et (5.66). Le mélange de gaz obéit la relation des mélanges
idéaux (8.92). Ainsi,

µA (T, p, cA) = µA (T, p) +RT ln (cA)

µB (T, p, cB) = µB (T, p) +RT ln (cB)

où µA (T, p) et µB (T, p) sont les potentiels chimiques substances A et B pures,
cA et cB sont les concentrations de A et B. Initialement, le système contient
N0 moles d’hélium dans le sous-système 1 et N0 moles d’oxygène dans le sous-
système 2 (fig. 8.4). La pression initiale pi est la même dans les deux sous-
systèmes. En tout temps, chaque sous-système est supposé être homogène. On
note N1 et N2 le nombre de moles d’hélium dans les sous-systèmes 1 et 2,
respectivement.

Fig. 8.4 Un système est divisé en deux sous-systèmes par une membrane osmotique qui
laisse diffuser la substance A, mais pas la substance B.

1) À l’équilibre, montrer que µA (T, p1) = µA (T, p2, cA).

2) Déduire du résultat précédent une relation entre les pressions p1 et p2
lorsque les deux sous-systèmes atteignent l’équilibre. Exprimer cA, p1 et
p2 en termes de N2. Déterminer p1 et p2 en termes de la pression initiale
pi sous la condition de volume égal, c’est-à-dire V1 = V2 = V0.

8.17 Solution

1) À l’aide de la relation (2.19) pour l’hélium dans chaque sous-système, on
obtient,

U̇1 = T Ṡ1 + µ1 Ṅ1 et U̇2 = T Ṡ2 + µ2 Ṅ2

ce qui implique que,

Ṡ = Ṡ1 + Ṡ2 =
1

T

(
U̇1 + U̇2

)
− µ1

T
Ṅ1 −

µ2

T
Ṅ2

Comme le système est isolé U̇ = 0, cela implique que U̇1 = − U̇2. La loi de
conservation de l’hélium implique que Ṅ1 = − Ṅ2. Ainsi,

Ṡ = − µ1 − µ2

T
Ṅ1
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et, de manière équivalente,

∂S

∂N1
= − µ1 − µ2

T

D’après le deuxième principe, l’entropie totale S du système est maximale
à l’équilibre. Ainsi, à l’équilibre,

∂S

∂N1
= 0 (équilibre)

ce qui implique que µ1 ≡ µA (T, p1) est égal à µ2 ≡ µA (T, p2, cA),

µA (T, p1) = µA (T, p2, cA) (équilibre)

2) La relation (8.92) pour un mélange idéal,

µA (T, p2, cA) = µA (T, p2) +RT ln (cA)

implique qu’à l’équilibre chimique,

µA (T, p1) = µA (T, p2) +RT ln (cA)

De plus, d’après la relation (8.80),

µA (T, p1) = µA (T, p2) +RT ln

(
p1
p2

)
En comparant les deux relations précédentes et en utilisant la définition de
la concentration cA, on obtient,

cA =
p1
p2

et cA =
N2

N2 +N0

L’équation d’état du gaz parfait implique que les pressions finales dans les
deux sous-systèmes sont,

p1 =
(N0 − N2)RT

V0
et p2 =

(N0 +N2)RT

V0

À l’aide des quatre équations précédentes, on obtient,

N2 =
N0

2

Ainsi,

p1 =
N0RT

2V0
et p2 =

3N0RT

2V0

De plus, comme,

pi =
N0RT

V0

on en déduit que,

p1 =
1

2
pi et p2 =

3

2
pi
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8.18 Centrale osmotique

Au niveau de la mer, l’eau d’un fleuve est détournée vers une centrale
osmotique. Dans cette centrale, une turbine est installée le long de la conduite
qui amène l’eau douce vers la membrane osmotique séparant l’eau douce du
fleuve de l’eau salée de la mer. On modélise cette centrale comme un système
constitué de deux sous-systèmes simples : l’eau douce dénotée 1 et l’eau salée
dénotée 2. Ces sous-systèmes sont séparés par une membrane semi-perméable
d’aire A et d’épaisseur ℓ qui laisse passer uniquement l’eau douce et par une
turbine (fig. 8.5). L’écoulement de l’eau douce à travers la membrane se fait en
régime stationnaire. L’eau salée et l’eau douce sont à l’équilibre thermique à
température T . La thermodynamique de ce problème est similaire à celle déve-
loppée en exercice 4.16 excepté qu’ici le courant de chaleur à travers la centrale
est nul, c’est-à-dire IQ = 0, étant donné que la température est constante.

Fig. 8.5 L’osmose de l’eau douce d’un fleuve 1 vers l’eau salée de la mer 2 génère un courant
d’eau I qui permet d’entrâıner une turbine avec une puissance P ext.

On peut garder de l’exercice 4.16 que la puissance extérieure P ext de la turbine
est,

P ext = (h2 − h1) I

où h1 et h2 sont les enthalpies molaires de l’eau douce et de l’eau salée, et
I est le courant d’eau douce à travers la turbine et la membrane. Le courant
d’entropie à travers la membrane osmotique est,

IS = (s2 − s1) I

où s1 et s2 sont les entropies molaires de l’eau douce et de l’eau salée. La
concentration de sel c est considérée comme suffisamment faible, c’est-à-dire
c ≪ 1. Pour une faible différence de pression p1 − p2 ≪ 1, la loi de Fick (3.75)
se réduit au premier ordre à

I = F
A

ℓ

∂µ

∂p
(p1 − p2) ≡ σ (p1 − p2)

où le coefficient de conductance osmotique σ s’écrit,

σ = F
A

ℓ

∂V

∂N
= F

A

ℓ
v

compte tenu de la relation de Maxwell (8.75).
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1) Exprimer la puissance extérieure de la turbine P ext en termes des potentiels
chimiques de l’eau douce µ1 et de l’eau salée µ2.

2) En déduire une expression de la puissance extérieure de la turbine P ext en
termes de la variation de pression p1 − p2 et du coefficient de conductance
osmotique σ.

8.18 Solution

1) Compte tenu de l’enthalpie molaire (8.67), la puissance extérieure P ext de
la turbine devient,

P ext = (µ2 − µ1) I + T (s2 − s1) I

À température constante T , le courant de chaleur (2.39) nul est lié au
courant d’entropie IS de la manière suivante,

IQ = T IS = T (s2 − s1) I = 0

Par conséquent, la puissance extérieure se réduit à,

P ext = (µ2 − µ1) I = ∆µ I

2) Compte tenu de la relation (8.92), pour une faible concentration de sel,
c’est-à-dire c ≪ 1, le potentiel chimique de l’eau salée s’écrit au 1er ordre
en termes de la concentration de sel c comme,

µ2 (T, p2, 1− c) = µ2 (T, p2) +RT ln (1− c) = µ2 (T, p2)− RTc

La puissance de la turbine devient alors,

P ext =
(
µ2 (T, p2, 1− c)−µ1 (T, p1)

)
I =

(
µ2 (T, p2)−µ1 (T, p1)−RTc

)
I

En intégrant la relation de Maxwell (8.75),

∂µ (T, p)

∂p
=

∂V

∂N
=

V

N
= v

déduite du théorème de Schwarz appliqué à l’énergie libre de Gibbs
G (T, p,N), de la pression p1 de l’eau douce à la pression p2 de l’eau sa-
lée, en négligeant la faible variation de volume molaire v de l’eau due à la
présence de sel à température T constante, on obtient,

µ2 (T, p2)− µ1 (T, p1) =

∫ µ2(T,p2)

µ1(T,p1)

dµ (T, p) = v

∫ p2

p1

dp = (p2 − p1) v

Par conséquent, la puissance de la turbine devient,

P ext = −
(
(p1 − p2) v +RTc

)
I < 0
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À l’équilibre, lorsque le courant d’eau douce est nul, c’est-à-dire I = 0, et
que la puissance extérieure est nulle, c’est-à-dire P ext = 0, on retrouve la loi
de van’t Hoff (8.118). En présence d’un courant d’eau I > 0, la puissance de
la turbine est la somme de deux termes négatifs qui contribuent à générer
une puissance mécanique par la centrale osmotique. Il est remarquable que
même à l’équilibre mécanique, c’est-à-dire p1 = p2, on peut générer une
puissance mécanique, c’est-à-dire P ext < 0 dû à l’osmose. Hors équilibre,
contenu de la loi de Fick (3.75) au premier ordre en p1 − p2,

I = σ (p1 − p2) > 0

la puissance de la turbine devient,

P ext = −σ
(
(p1 − p2)

2
v +RTc (p1 − p2)

)
Dans la mesure où la centrale osmotique est établie au bord de la mer,
une région présumée sans dénivellation importante, alors la différence de
pression p1 − p2 est petite. Dans ce cas, c’est le second terme qui domine,

P ext = −σ RTc (p1 − p2) < 0


